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MASS TRANSFER UNDER CONDITIONS OF FILTRATION IN A RANDOMLY 

INHOMOGENEOUS MEDIUM 

Yu. A. Buevich UDC 532.546 

Dispersion phenomena occurring under conditions of filtration in a medium whose 
porosity and permeability are homogeneous and isotropic random fields are studied. 
The effective coefficients of hydraulic resistance and the dispersion of the im- 
purity are calculated, and the averaged equations of filtration and convective 
diffusion are derived. 

Dispersion effects in filtration flows are attributed, as a rule, to convective disper- 
sion, owing to the interaction and mixing of elementary streams, appearing in a flow in a 
criss-crossed pore space, and to hindered molecular diffusion of the impurity in pores [I, 2]. 
These phenomena are in equal measure characteristic also of macroscopically homogeneous mater- 
ials, whose porosity and permeability are independent of the coordinates, and of inhomogeneous 
materials, when the indicated characteristics form random or determinate fields. 

The nonuniformity of the properties of a porous medium lead to the appearance of a unique 
spatially fluctuating motion of the liquid, superposed on the average filtrational flow and 
called in [3] filtrational pseudoturbulence. The correlation properties of the corresponding 
random velocity field are studied in [3, 4], and in application to a flow in a closely packed 
granular bed in [5]. 

It is obvious that pseudoturbulent motion gives rise to the appearance of an additional 
convective dispersion of the impurity. Since the pseduoturbulent mixing length is of the 
order of the linear scale of the inhomogeneities and the latter is usually much larger than 
the internal structural scale (pore size), pseudoturbulent dispersion of the impurity in real 
inhomogeneous media often more important than dispersion caused by other mechanisms, even 
in cases when the amplitude of the fluctuations of the rate of filtration is relatively small, 
i.e., the inhomogeneity is weak. 

Attempts have been made to study the indicated dispersion and to obtain an averaged equa- 
tion of convective diffusion based on the assumptions that the flow of moles of liquid is a 
Markovian process and that A. N. ~olmogorov's equations, relating the impurity concentration 
to the moments of the random field of the fluctuations in the rate of filtration, are valid 
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(see [6, 7] and the references quoted there). As a result, a quite complicated integrodif- 
ferential equation for the average impurity concentration, whose study and simplification 
require the use of special localization and regularization techniques, was derived. In addi- 
tion, in [6, 7] specific Lagrangian correlation functions, whose relationship with the char- 
acteristics of the random permeability and porosity fields actually remains unknown, are in- 
troduced. In what follows the averaged equations of filtration and convective diffusion in 
a filtration fl0w are derived, like in [4, 5], by a considerably simpler and more effective 
method, based on the correlation theory of stationary stochastic processes [8] and not re- 
quiring significant additional assumPtions except for the completely natural assumption that 
the linear scale of the random fields is much smaller than the characteristic scale of the 
average concentration field. 

Stochastic Equations. We shall assume that the local porosity M and permeability K of 
the porous medium can be represented in the form 

M = m + m ' ,  K : = k + k ' ,  ( m ' >  = <k'> = 0 ,  (1 )  

where m and k are constants, equal to the average porosity and permeability of the medium, 
respecitvely; and, m' and k' are the uniform and isotropic random fields, whose linear scales 
s are much larger than the pore size. In this case, the introduction of local porosity and 
permeability as effective macroscopic characteristics of the medium is correct. On scales 
greatly exceeding s the porosity of the medium can thus be regarded as uniform on the aver- 
age. 

In what follows we shall employ the methods of the correlation theory of stationary sto- 
chastic processes [8], according to which an arbitrary uniform random field can be repre- 
sented in the form of the stochastic Fourier-Stieljtes integral 

a '  (r) = S exp (ixr) dZc~, dZct =: dZo: (:r 

the correlation function characterizing the uniform random fields =' and $' is expressed in 
the form 

R~,~ (x) == ( a '  (r) [~' (r + x) ) = 

= J'~ exp(--  ixr -- ix ' ( r  @x)) (dZ~(g)dZfs(~') ) ,  

while the average quantities in the integrands can be formally written as 

( dZs (~) dZ~ (x') > ::  8 (x - -  x') ~e,~ (x) dxdx', 

where 6(x) is the vector Dirac 6 function, and ~,~ is the joint spectral density of the ran- 
dom fields a' and ~' Thus 

R~,~ (x) = ~ exp (ixx) ~ , ~  (g) dx, 

where the integration extends over the volume of the wave space ~. The spectral densities 
~m,m, ~k,k, and ~m,k of the random fields m' and k' characterize the nonuniformity of the 
porous medium, and they must be regarded as known. For simplicity we assumed that these 
random fields are not only uniform, but also isotropic. Then the indicated spectral densi- 
ties depend only on the modulus z of the wave vector. We have 

(o): 
0 

kg = R~,h (0) = 4n i ~h,~. (• • (2 ) '  
0 

mokoR := Rm,h (0) : 4~ [ q)m,h (• • 
0 

where  R i s  t h e  c o r r e l a t i o n  c o e f f i c i e n t ,  w h i l e  m 0 and k 0 a r e  t h e  rms f l u c t u a t i o n s  o f  t h e  
p o r o s i t y  and p e r m e a b i l i t y .  I f  M and K a r e  r e l a t e d  by a d e t e r m i n a t e  f u n c t i o n a l  r e l a t i o n ,  t hen  
(M = f(K)) 

M ~. f + gk'  @ hk '~, {f, g, h}=:{1,  d/dK, ~/2dK~} f]K=n, 

m ~ f + h ( k'2 ) , m' ~ gk',  mo -- gko, R = : I ,  (3 )  
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i.e., in particular, the average porosity m of an inhomogeneous medium with an average per- 
meability k differs from the porosity of a uniform medium with the same permeability, equal 
to f. 

In order to concentrate on the fundamental aspects of the problem and to simplify as 
much as possible the calculations, we shall write the local equations for filtration and con- 
servation of the impurity mass in the simple form 

V . -  K v P ,  V V O, M OC 
- -  = . . . .  V ( C V )  = O, ( 4 )  

which corresponds to the assumption that Darcy's law holds (i.e., filtration is linear) and 
which neglects the effect of fine-scale dispersion of the impurity, owing to molecular diffu- 
sion and mixing in the criss-crossed pore space. 

We represent the local velocity V, the local pressure P, and the local corresponding 
average values v, p, and c and fluctuations v', p', and c' with zero means. The vectors 
v and 7p can be assumed to be independent of the coordinates and time; then v' and p' are 
homogeneous random fields. The average concentration of the impurity c depends, generally 
speaking, on t and r; therefore, the random field c' is nonuniform and, in addition, depends 
in a determinate manner on the time. 

Substituting the indicated expressions for the local quantities into (4) and averaging, 
we obtain the equations 

k I 
v -- VP . . . .  < k 'Vp '  >, V v = O, 

( 5 )  
Oc Oc' 

m Ot ~ v v c +  (m' Ot \ / - t - V  ( c ' v ' )  ~ :  O, 

Subtracting the averaged equations ( 5 )  from the corresponding equations in (4) and neglec- 
ting quantities of the type ~'~' - <a'~'>, which we assume are small, we obtain the stochastic 
equations 

k k' 
v '  --  VP' ~ - -  VP, V v '  = O, ( 6 )  

Oc Oc' 
m' i m v 'vc -} -  v v c '  == O, ( 7 )  

Ot Ot 

determining the properties of the random fields v', p', and c'. The quantities v, p, and c 
in (6) and (7) must be regarded as known. 

Filtration. We represent the quantitiesV ' and p' as Fourier-Stieljtes integrals with 
the random measures dZv, dZp. Then Eqs. (6) imply a system of linear equations for the random 
measures 

k ! 
dZ~ ::- ..... i ~ - - -  d Z ~ - -  vpdZi ,  ixdZ,, : -O,  

b~ b t 

which have the following solutions: 

dZ~--  1 [VP (~VP)~ ] dZ:~' d Z v -  " le ~VP ( 8 )  
b t L 

From here, taking into account the definition of k 0 in (2), 

1 (xVp)  ~ q)n,n (x)  d~  -.- 4~x ~ n , ~  (• •176215 VP =: - -  3---~-  
< k 'Vp'  > = Rk , vv (O)  - k ~" 3k "o 

and after substituting (9) into (5) we obtain an equation describing filtration in a nonuni- 
form porous medium: 

v - -  1 - - - - .  VP, V v - ` O -  ( 1 0 )  

The effective permeability of the inhomogeneous medium, determining the coefficient of 
proportionality between the average rate of filtration and the gradient of the mean pressure, 
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thus turns out to be somewhat lower than the average permeability of the medium. The de- 
crease in the flow of liquid through the region with the reduced permeability is not com- 
pletely compensated by an increase in the flow through the region whose local permeability 
exceeds the average value. This can be interpreted as an increase in the hydraulic resis- 
tance to the filtrational flow, owing to the nonuniformity of the porous medium. We empha- 
size that the system studied differs from a pseudofluidized bed - a nonuniform medium with 
a mobile porous framework, in which the fluctuations of the porosity, caused by the pseduo- 
turbulent motion of the particles, reduces the hydrulic resistance [9]. 

Using the general method, it is not difficult to obtain a representation for the corre- 
lation functions of the random fields v', p', m', and k' and thereby give an exhaustive sta- 
tistical description of the properties of filtrational pseudoturbulence on the basis of the 
correlation theory. In particular, the mean squares of the components of the fluctuation 
rate of filtration are given by 

<V12)  - 1~-  , , 2 > = < V 3  2 )  == 1-T - -  ' 

and in addition the r I axis is oriented along the vector -Vp - v. Thus, the longitudinal 
rms fluctuational rate of filtration is 2v~ = 2.83 times higher than the analogous transverse 
value, which, for example, is in agreement with the result of [5]. 

Concentration Fluctuations. Since the average concentration c depends (in a determinate 
manner) on the coordinates and time, the random field c', as is evident from Eq. (7), is in- 
homogeneous and also depends on the time. To eliminate the time as an independent variable 
it is sufficient to Laplace transform (7) (s is the transform variable); the initial value c 
may be set equal to zero without loss of generality. In order to employ in the analysis of 
the inhomogeneous random field ~' (the transform of the field c') the methods developed for 
uniform random fields, we introduced the Taylor expansion of the quantities ~ and 7~ appear- 
ing in the transformed equation (7), around an arbitrary point selected as the origin of the 
coordinates, i.e., 

(r) = ~o + rv~O + . . . .  V~ (r) - -  V~ ~ + (rv) V~ ~ + . . . .  
( 1 2 )  

where the degree sign indicates that the corresponding quantities are determined at this 
point; they must be viewed as some constants. 

Therefore, the Laplace-transformed Eq. (7) can be written as 

(sm+vv)~'+s~m'+v'v~=(sm+vv)~" + s i n ' ( 1  + r v +  . . - ) ~ P ~  + r v +  - . - ) V ~  ~  (13) 

If =,(r) is a uniform random field, represented in the form of a Fourier-Stieltjes inte- 
gral with the random measure dZ~, then re'(r) can also be expressed in this form, and in addi- 
tion the random measure will be given by id(dZ~/d~). The random fields represented by the 
product of e' by the components of r in powers higher than unity can be represented analogous- 
ly. For this reason, from (13) we can obtain by the previous methods a relation for the ran- 
dom measure of the field ~'" 

sm + J + " ' 

where the repeated indices are summed. The degree sign is dropped in (14), and in addition 
r is once again understood to be the radius vector of an arbitrary point. The relations (8) 
and (14) enable determining, in principle, the mean values <dZ*mdZ~> and <dZ*vdZ~>, and then 
calculating the quantities s<m'~> and <~,v,>. 

We assume below that the ratio of the linear scales of the nonuniformity and the field 
of the average concentration s << I; as follows from the second equation in (5), the time 
scale of this field equals L/v. The first two terms in the indicated equation evidently are 
of the order of cvs and the next two terms are of the ~rder of cvs 2. Neglecting terms 
in the expressions for the quantities <m'Sc/St> and 7<c'v'>, which are of higher order in 
s is equivalent to retaining in the indicated equation for the average concentration only 
the terms which contain derivatives of s with respect to t and r no higher than of second 
order. We shall confine ourselves to this accuracy, which is entirely natural in the analysis 
of processes of the diffusion type. It is clear that this imposes restrictions on the accuracy 
of the calculation of the average quantities in the second equation of (5) or their transforms 
in (13), and therefore also on the number of terms in the expansions (12) which must be taken 
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into account in (13) and then in (14). It turns out that all terms in these expansions except 
for the first terms lead to the appearance of quantities which are proportional to derivatives 
of third and higher orders of the average concentration in the final equations of convective 
diffusion, and they must be dropped in accordance with the accuracy adopted for the descrip- 
tion of the diffusion process. 

In integrating over the volume of the wave space it is conventient to introduce a spheri- 
cal coordinate system with the polar axis z i, oriented along the vector -7p -v, and the axis 

~2 chosen so that the vector 7c would lie in the plane (• • 2). Then the volume element in 
wave Space is given by d~ = • 2 sin 8d• Making the substitution ~ = cos O we obtain 

2; t  1 S2 ~2d~ 
! d~l~ d* s~-]-(• 2 •162215 s < m'qD' > = m ~ 

The integrals over d~ are functions of sm/• which since large values of the diffusion 
time correspond to small values of s, can be expanded in a series in powers of this quantity. 
In so doing, only the terms in these series, which after transforming back to the original 
functions yield quantities containing derivatives of c with respect to t and r of order no 
higher than second, need be retained. After the calculations are completed and after trans- 
forming to the original functions we obtain 

Oc' \ =. rt ( tm 0 ~ , moko O*'c ' 
m' . . . .  ~m~ : ?R tm~ ~ ) ,  (15) 

Ot / 2 v Ot ~ k 

where the axis r I = x is oriented along the vector -7p -v. Retaining only the terms with 

the first derivatives of c we obtain analogously for the longitudinal x-component of the 
pseudoturbulent flow q = <c'v'>: 

�9 r~ ( m~176 lrak Oc ?2 k~o Oc ) (16) 
q x =  < C'Vx > = 2 VR k T -]- k 2 vlh ~ " 

The transverse y component of the flow q is proportional to the mixed derivative dZc/dtdy, 
and on the basis of the accuracy adopted here it must be set equal to zero. In deriving (15) 
and (16) we employed the definitions (2) and the equations (8), and we also introduced the 

notation 

l m -  tnB4n 6 ti)m.r. (• • link -~ Rmoko4"~ o j" Ogm'h (• • 

= ~ {~k,h(• xdx, ? = 1 - -  

k2o o 3k~ 

(17) 

In the general case s - s - s - s and in the presence of a determinate functional 
dependence between the local porosity and permeability all these scales are the same, R = I, 
and m 0 can be expressed in terms of k 0 in accordance with (3). 

Using standard techniques, it is not difficult to calculate also the two-point correla- 
tion functions, relating the random field c' with the other random fields introduced above. 

Convective Diffusion. Using (15) and (16), we obtain from (5) the following equation 
describing on the average the convective diffusion of the impurity in the nonuniform porous 

O~ c O~ c Oc Oc T &c + a q- D m - - - - 1 - ~ )  ~. 
at ax  at ~ a tax  ax  ~ 

T ~ m~ lm moko ~7 2 k2o . . . . .  , a ~ z ? R  l~k,  D -  v lh .  
2 v ~ 2 k 2 

reed ium: 

(18) 

Equation (18) has a somewhat nonstandard form, because it contains a mixed derivative 
of c. To eliminate this derivativewe used the method of operator expansions, employed pre- 
viously in [10, Ii] in the derivation of the "equivalent" equation describing heat transfer 
in a filtrational flow and filtration in fractured porous media. We represent (18) in the 
form 

1084 



= [ 1  a 0 
Ox v O---i--' - - m  . . . .  

a O 
= 1 _ ~ .  

v Ot 
-~ . . .  ( - -  m ~  

Oc O" c ~ D O" c ;i 
at i T -~ = 

at"- --bT ] 
Oc TO~ O ' c ~  
at ' at'-' * D--~T'x~ ]" 

For the accuracy adopted above, it is easy to derive from here the equation 

OZc ac ac OZc 
- - + m - - + v  - - = D  

Ot z Ot Ox Ox z 

T -- ( ) ma T::: ~ ?Rm re~176 l,~h 1 m~ lm 
v v k 2 

(19) 

For �9 > 0 this equation is of the hyperbolic type, and for �9 < 0 it is of the elliptic 
type. If M = f(K), i.e., the relations (3) holds, then usually m0/m < k0/k [i], so that the 
parameter �9 > 0 and can be interpreted as a relaxation time. With the same accuracy, we can 

write 

t n  - -  - -  

Ot m ax 

~C 
&r 

~ ( I  + a  a ) (  6c OZc 
m Ox } "'" - - v - -  + T ~ + D  

�9 Ox at 2 

~2c ' D 6ac ~ = 
Ot 2 Ox z / 

O2C ) 
aj.2 ' 

whence, instead of (19), it follows that 

ac Oc oat a2c 
m ~ ~- v =-=: T - -  -" D I - - ,  

at ax at 2 Ox 2 

Di := D-- v----a--a : ~?v ( ?  --"~ --re~176 l~,k~. 
m \ 2 k2 ti, -- R k / 

( 2 0 )  

This equation can also be, generally speaking, both hyperbolic and elliptic. If M = 
f(K), it is more likely that it will be of the elliptic type. 

Moreover, setting a = 0 ! + o=, in the general case Eq. (18) can be rewritten in the form 

m ( 1  o, O ) Oc ( o2 a ) ae a=c a2c 
m Ox Ot ~ v 1 ' -.- T ~  + D  v Ot Ox Otz Ox z , 

whence by the previous method, within the stated accuracy, we obtain 

Oc ( ~ 0 )  ac _i_ T 02C + ( D ) _ _  m Ot . . . . . .  v I . _ a:v 02c 
v at ox at 2 m Ox 2 ' 

and then 

..... m -  + T " 
v Ox Ot v Ot z . m Ox 2 

It is easy to see that 01 or 02 can be chosen so that the coefficient in front of either 
of the second derivatives vanishes, and as a result we arrive at equations of the parabolic 
type 

ac Oc 02c v (  v )  
m - - -  v -  = - D ,  - -  D , = = D  . . . . . . .  a - - - -  T ( 2 1 )  

at Ox Ox z ' m m , 

or 

ac ac ozc ( ) v T ,  T ,  T - -  m m 
. . . . . . .  a D . (22) m at Ox Ot z ' v v 

Thus, within the limits of the physical accuracy of the model under study, which reduces 
the description of the dispersion process to the solution of second-order partial differential 
equations, even the concept of the type of equation is, in a certain sense relative. The dif- 
ferences between the solutions of Eqs. (18)-(22) fall within the limits of error of the theory 
itself, and the specific form of the equation of convective diffusion with given boundary and 
initial conditions must be chosen so that the corresponding boundary value problem would be 
properly posed. 
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We note in this connection that the equivalent equations for heat transfer in a hetero- 
generous medium in the presence of filtrational flow [i0] and filtration in a fissured-porous 
medium [ii], which are of the elliptic type, can also be transformed to equations of the para- 
bolic type, which is important in that bounaary value problems in the theory of heat transfer 
and filtration be properly posed. 

The equations of convective diffusion obtained above do not contain derivatives with 
respect to the transverse coordinates, since the transverse components of the pseudoturbulent 
flow of the impurity vanish. More accurately, these components differ from zero (they depend, 
for example, on the corresponding components of the gradient of the quantity ~c/St), but are 
higher order infinitesimals and should not be taken into account in the approximation considered. 
This can be interpreted as the absence of statistical independence between the random fields 
of the fluctuations of the concentration and the transverse Components of the rate of filtra- 
tion. In reality, however, as is evident .from Eq. (7) or the expression (14), the indicated 
random fields are interrelated. For this reason, it is more correct to state that the fluctu- 
ations of the impurity concentration are such that the pseudoturbulent flow of the impurity, 
owing to the moles of matter moving in the direction of the transverse pert of the gradient 
of the average concentration, is precisely compensated by the flow associated with the moles 
of matter moving in the opposite d~rection. The existence of exchange between the indicated 
moles should cause this balance to break down. Therefore, it may be expected that filtra- 
tional pseudoturbulence will lead to the appearance of a pseudoturbulent component of the 
dispersion is taken into account at the outset in the equation of balance of the impurity in 
(4). 

NOTATION 

~, coefficient in (18); c is the concentration; D is the dispersion coefficient (diffu- 
sion); f, g, and h, coefficients in the expansion (3); k, permeability; L and s linear scales 
of the mean concentration field and nonuniformity of the medium, respectively; m, porosity; 
p, pressure; Ra,~, R, correlation function and the correlation coeficients" r. radius vector; 
q, pseudoturbulent flow; s, Laplace transform variable; T, acoefficient in'(18); t, time; v, 
rate of filtration; dZ~, random measure; X, a parameter in (17); 8, D, polar and azimuthal 
angles in wave space; x, wave vector; B, viscosity; T, relaxation time; ~,~, spectral density; 

= cos 8; the random fields with zero mean are denoted by a prime, and their rms amplitudes 
are denoted by a zero subcript; a superscript asterisk denotes complex conjugation. 
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